

EECS 562
Homework 9

1. Determine the instantaneous phase and frequency for the following signals. Let $f_c=100\text{kHz}$

- a. $\cos(2\pi f_c t + 500t^2)$
- b. $\cos(2\pi f_c t + 500\sqrt{t})$

2. Given a set of information bits $b_i = \{0, 1, 1, 0\}$. Let $x(t) = 0$ for 1 ms for a bit = 0 and $x(t) = 1$ for 1ms for a bit = 1.

A modulated RF signal is $y_{RF}(t) = 10\cos(2\pi(x(t)*10000 + f_c)t)$ where $f_c=10\text{kHz}$. Plot $y(t)$ for $0 < t < 4\text{ms}$.

3. A message signal is $x(t) = \cos(2\pi f_m t)$. The transmitted RF signal is given by $y_{RF}(t) = 20 \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$, where $f_c=100\text{MHz}$, $\beta=3$, and $f_m=15\text{kHz}$.

- a. Is the RF modulation:
 - i. PM
 - ii. FM
 - iii. VSB
 - iv. SSB
 - v. DSB-LC
- b. What is the instantaneous frequency?
- c. What is the total power in dB_W ?
- d. What is the frequency deviation, Δf ?
- e. What is the RF bandwidth of $y_{RF}(t)$?
- f. How much power is at 100 MHz?
- g. How much power is at 100.03 MHz?

4. Let the RF signal be

$y_{RF}(t) = A_c \cos(\theta_i(t))$ where

$\theta_i(t) = 2\pi f_c t + \beta \sin(2\pi f_m t)$ with $x_{bb}(t) = A_m \cos(2\pi f_m t)$

Here $A_m=2.0\text{V}$ and $f_c=109\text{MHz}$, $f_m=1\text{kHz}$, $A_c=20\text{V}$, $\beta=0.25$

- a. Is the phase or frequency modulation?
- b. What is the modulation index?
- c. Find the frequency deviation.
- d. Find the frequency sensitivity factor in Hz/V.
- e. Plot the amplitude spectrum of $y_{RF}(t)$.

State any approximations.

- f. What is the total power in $y_{RF}(t)$ in dB_W ?
- g. What is the RF bandwidth?

5. Let the RF signal be

$y_{RF}(t) = A_c \cos(\theta_i(t))$ where

$\theta_i(t) = 2\pi f_c t + \beta \sin(2\pi f_m t)$ with $x_{bb}(t) = A_m \cos(2\pi f_m t)$

Here $A_m=1.0\text{V}$ and $f_c=109\text{MHz}$, $f_m=1\text{kHz}$, $A_c=10\text{V}$, $\beta=5$.

- a. Find the frequency deviation, Δf .
- b. Find the frequency sensitivity factor in Hz/V.
- c. Plot the amplitude spectrum of $y_{RF}(t)$.

d. What is the RF bandwidth?

6. For each case below use using Carson's rule to find the bandwidth of the frequency modulated signal. The deviation constant = 0.75 Hz/volt.

a. $A_c=1.5V$, $f_m=2$ Hz, $f_c=8$ Hz, message amplitude = $A_m=0.5V$,

b. $A_c=1.5V$, $f_m=2$ Hz, $f_c=8$ Hz, message amplitude = $A_m=1.5V$

c. $A_c=1.5V$, $f_m=0.5$ Hz, $f_c=8$ Hz, message amplitude = $A_m=1.5V$

d. Define a bandwidth expansion factor as B_{RF} / B_{bb} . Calculate the bandwidth expansion factor for the systems defined in parts a)-c).

7. Let the message signal $m(t)$ given below be the input to an FM modulator with $k_f=20$ Hz/V and $f_c=200$ Hz and $A_c=1.0$. $v=\{2.5, 5, 7.5\}$, the symbol time=40ms.

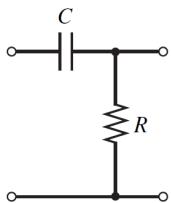
$$m(t)=\sum_{i=1}^3 v_i \operatorname{rect}\left(\frac{t-(i-1) T_s-0.5 T_s}{T_s}\right)$$

a. Plot $m(t)$.

b. Plot the RF signal, $y_{RF}(t)$.

c. What frequencies are present in $y_{RF}(t)$

d. Suggest a detector architecture detect each symbol


8. In a stream of bits each pair of bits (2 bits) is mapped into one voltage level to form the baseband signal, e.g. $m(t)=v_i$ for 20 ms, where $v_i=0, 2.5, 7.5, 10$. The message signal is input to an FM modulator with $k_f=20$ Hz/V and $f_c=2000$ Hz and $A_c=1$.

a. What is the bit rate for this signal?

b. During a symbol time of 20ms are the 4 possible transmitted RF signals, are these orthogonal to each other?

9. A DC blocking capacitor is not needed when a balanced discriminator is used to demodulate FM signals, why?

10. A HPF shown below has a transfer function of $H(f) = \frac{j2\pi f RC}{1+j2\pi f RC}$, the 3dB cutoff frequency = $\frac{1}{2\pi RC}$; let $R=800\Omega$, $C=10^{-9} F$,

a. Plot $|H(f)|$ and find and mark the 3dB cutoff = f_{3dB} .

b. The input to $H(f)$ is $x_{RF}(t)=\cos(2\pi f_c t + \beta \sin(2\pi f_m t))$. The output $y(t) \approx H(f_i(t))$. For $R=800\Omega$, $C=10^{-9} F$, $\beta=1$, $f_m=1000$ Hz, and $f_c=100$ kHz. Find $|y(t)|$; note here $f_c \ll f_{3dB}$ and $H(f)$ is approximately linear.

11. A message signal $m(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$ is input to an FM modulator with modulation index β . The transmitted FM signal can be written as

$$s(t) = A_c \cos \left(2\pi f_c t + \beta \left(\frac{A_1}{2\pi f_1} \sin(2\pi f_1 t) + \frac{A_2}{2\pi f_2} \sin(2\pi f_2 t) \right) \right) \text{ let}$$

$\beta_1 = \beta \frac{A_1}{2\pi f_1}$ and $\beta_2 = \beta \frac{A_2}{2\pi f_2}$ then $s(t)$ can be expanded using Bessel functions to form

$$s(t) = A_c \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} J_k(\beta_1) J_n(\beta_2) \cos(2\pi(f_c + kf_1 + nf_2)t)$$

Given this knowledge is FM a linear or non-linear modulation and justify your answer.